(t^3-7t^2-7t+49)/(t^3-343)

Simple and best practice solution for (t^3-7t^2-7t+49)/(t^3-343) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (t^3-7t^2-7t+49)/(t^3-343) equation:


D( t )

t^3-343 = 0

t^3-343 = 0

t^3-343 = 0

1*t^3 = 343 // : 1

t^3 = 343

t^3 = 343 // ^ 1/3

t = 7

t in (-oo:7) U (7:+oo)

(t^3-(7*t^2)-(7*t)+49)/(t^3-343) = 0

(t^3-7*t^2-7*t+49)/(t^3-343) = 0

t^3-7*t^2-7*t+49 = 0

t^3-7*t^2-7*t+49 = 0

{ 1, -1, 7, -7, 49, -49 }

1

t = 1

t^3-7*t^2-7*t+49 = 36

1

-1

t = -1

t^3-7*t^2-7*t+49 = 48

-1

7

t = 7

t^3-7*t^2-7*t+49 = 0

7

t-7

t^2-7

t^3-7*t^2-7*t+49

t-7

7*t^2-t^3

49-7*t

7*t-49

0

t^2-7 = 0

DELTA = 0^2-(-7*1*4)

DELTA = 28

DELTA > 0

t = (28^(1/2)+0)/(1*2) or t = (0-28^(1/2))/(1*2)

t = 7^(1/2) or t = -7^(1/2)

t in { -7^(1/2), 7^(1/2), 7}

(t+7^(1/2))*(t-7^(1/2))*(t-7) = 0

((t+7^(1/2))*(t-7^(1/2))*(t-7))/(t^3-343) = 0

( t+7^(1/2) )

t+7^(1/2) = 0 // - 7^(1/2)

t = -7^(1/2)

( t-7 )

t-7 = 0 // + 7

t = 7

( t-7^(1/2) )

t-7^(1/2) = 0 // + 7^(1/2)

t = 7^(1/2)

t in { 7}

t in { -7^(1/2), 7^(1/2) }

See similar equations:

| (0.005)(0.0039)= | | 2x^2-39x+240=0 | | X/4=x+2/2 | | 2q^2-3q-2= | | 4x+3/5=9x+5/11 | | y=5mx+2b | | 4/2x-3=8/2x | | (3x-5y-58)+(6x+7b)=m | | 3x^2+10=7x | | 8*8+6=m | | 3/20c=17/20 | | x^2-8x+50=0 | | 3/x+3=5/2x+6+1/x-2 | | 3w^2+8w-3= | | 1/4(c-7)=1/10(c-4) | | 31/5+1/5x-4/5 | | 3g^2+4g-4= | | 3(2g-1/3)=2(3g-1/2) | | 945=x(20+x)+3x+-30 | | 2s^2+9s+10= | | 5y-4x=24 | | 17y^2-76y-45=0 | | 5y=-60 | | 0,5x-2/3x=7/12 | | x^2=-18x-80 | | 3/x-3=x/x-3+3 | | 9d+d=180 | | x-.6-1=x-1.28 | | 2/3x+16=0 | | 5n^2-24n-5= | | (36x^-2/3)^-1/2 | | 4x-12-1=5x-25 |

Equations solver categories